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Abstract We present an exact and efficient branch-and-bound algorithm MCR for
finding a maximum clique in an arbitrary graph. The algorithm is not specialized for
any particular type of graph. It employs approximate coloring to obtain an upper
bound on the size of a maximum clique along with an improved appropriate sorting of
vertices. We demonstrate by computational experiments on random graphs with up
to 15,000 vertices and on DIMACS benchmark graphs that in general, our algorithm
decidedly outperforms other existing algorithms. The algorithm has been successfully
applied to interesting problems in bioinformatics, image processing, design of quan-
tum circuits, and design of DNA and RNA sequences for biomolecular computation.

Keywords Maximum clique · Algorithm · Branch-and-bound · Approximate
coloring · Computational experiments

1 Introduction

Given an undirected graph G, a clique is a subgraph of G, in which all the pairs of
vertices are adjacent. Finding a maximum clique in a graph is one of the most impor-
tant NP-hard problems, and it has been studied by many researchers. Pardalos and
Xue (1994) and Bomze et al. (1999) presented excellent surveys of this problem. See
also Chap. 7: Selected Applications in Bomze et al. (1999) for applications of maximum
clique algorithms.

Some remarkable developments have been made by Tarjan and Trojanowsky
(1977), Robson (1986), and others to improve the theoretical order of the time-com-
plexity to solve the maximum clique problem. These algorithms, however, are not
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necessarily fast in solving problems of practical size. Since, this problem has important
practical applications, another approach with practically fast performance is required.
A collection of studies in this direction was presented in Johnson and Trick (1996).
Our present paper also addresses the issue of speed.

One of the standard approaches for finding a maximum clique is based on the
branch-and-bound method. Several branch-and-bound algorithms use approximate
coloring to obtain an upper bound on the size of a maximum clique. Elaborate coloring
can significantly reduce the search space. However, coloring is time-consuming, and
therefore, it becomes important to choose an appropriate trade-off between the time
required for approximate coloring and the reduction in the search space thereby
obtained. Many efforts have been made along this line (see Bomze et al. 1999).
Recently, Östergård (2002) proposed a new maximum clique algorithm, which was
supported by computational experiments. Sewell (1998) presented a maximum clique
algorithm designed for dense graphs.

In this paper, we present a branch-and-bound algorithm MCR for finding a maxi-
mum clique. This algorithm is based on approximate coloring and appropriate sorting
of the vertices. We experimentally compare MCR with the other existing algorithms.
The experimental results show that our algorithm is very fast for many random graphs
and DIMACS benchmark graphs. The tested graphs include large random graphs with
up to 15,000 vertices.

The algorithm MCR is an improved algorithm of MCQ that was presented in
Tomita and Seki (2003). These algorithms yielded interesting results for the applica-
tions in bioinformatics by Bahadur et al. (2002, 2005, 2006) and Akutsu et al. (2006),
and in other areas by Hotta et al. (2003), Nakui et al. (2003), and Kobayashi et al.
(2003).

2 Preliminaries

1. Throughout this paper, we are concerned with a simple undirected graph G =
(V, E) with a finite set V of vertices and a finite set E of unordered pairs (v, w)(=
(w, v)) of distinct vertices called edges. The set V of vertices is considered to be
ordered, and the ith element in V is denoted by V[i]. A pair of vertices v and w
are said to be adjacent if (v, w) ∈ E .

2. For a subset W ⊆ V of vertices, G(W) = (W, E(W)) with E(W) = {(v, w) ∈
W × W |(v, w) ∈ E} is called a subgraph of G = (V, E) induced by W.

3. For a vertex v ∈ V and V′ ⊆ V, let �V′(v) be the set of all vertices that are adjacent
to v in an induced subgraph G(V′), i.e.,

�V′(v) = {w ∈ V ′|(v, w) ∈ E} (�/ v).

We call degV′(v) = |�V ′(v)|, the number of vertices adjacent to a vertex v in
G(V′), the degree of v in G(V′). If V′ = V or V′ is understood from the context,
then �V ′(v) and degV′(v) may be simply written as �(v) and deg(v), respectively.
In general, the number of elements in a set S is denoted by |S|.

4. Given a subset Q ⊆ V of vertices, the induced subgraph G(Q) is said to be a clique
if (v, w) ∈ E for all v, w ∈ Q with v �= w. In this case, we may simply say that Q is
a clique. In particular, a clique of the maximum size is called a maximum clique.
The number of vertices of a maximum clique in graph G = (V, E) is denoted by
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ω(G) or ω(V). Note that ω(G) ≤ �(G) + 1, where �(G) is the maximum degree
in graph G.
A subset W ⊆ V of vertices is said to be independent if (v, w) /∈ E for all v, w ∈ W .

3 Maximum clique algorithm MCR

3.1 A basic algorithm

Our basic algorithm begins with a small clique, and continues finding larger and
larger cliques until one is found that can be verified to have the maximum size. More
precisely, we maintain global variables Q and Qmax, where Q consists of vertices of
a current clique, and Qmax consists of vertices of the largest clique found so far. Let
R ⊆ V consist of vertices (candidates) that may be added to Q. We begin the algorithm
by letting Q := ∅, Qmax := ∅, and R := V (the set of all vertices). We select a certain
vertex p from R and add p to Q (Q := Q ∪ {p}). Then, we compute Rp := R ∩ �(p)

as the new set of candidate vertices. This procedure (EXPAND in Fig. 1, where each
statement with a comment /∗ . . . ∗/ at its right is to be replaced by the statement
(possibly empty) between /∗ and ∗/ in this basic stage.) is applied recursively while
Rp �= ∅.

When Rp = ∅ is reached, Q constitutes a maximal clique. If Q is maximal and
|Q| > |Qmax| holds, Qmax is replaced by Q. We then backtrack by removing p from Q
and R. We select a new vertex p from the resulting R and continue the same procedure

procedure EXPAND(R, No) /∗ procedure EXPAND(R) ∗/
begin

while R �= ∅ do
p := the vertex in R

such that No[p] = Max{No[q] | q ∈ R}; /∗ ∗/
{i.e., the last (rightmost) vertex in R} /∗ ∗/

if |Q| + No[p] > |Qmax| /∗ if |Q| + |R| > |Qmax| ∗/
then /∗ ∗/
Q := Q ∪ {p};
Rp := R ∩ �(p);
if Rp �= ∅ then

NUMBER-SORT(Rp, No′); /∗ ∗/
{the initial value of No′ has no significance} /∗ ∗/
EXPAND(Rp, No′) /∗ EXPAND(Rp) ∗/

else if |Q| > |Qmax| then Qmax := Q fi
fi
Q := Q − {p}

else return
fi
R := R − {p}

od
end {of EXPAND}

Fig. 1 EXPAND (/∗ Basic EXPAND ∗/)
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until R = ∅. This is a well-known basic algorithm for finding a maximum clique (for
example, Fujii and Tomita 1982; Tomita et al. 1988; Carrghan and Pardalos 1990;
Tomita et al. to appear, and others).

3.2 Pruning

In order to prune unnecessary searching, we employ the approximate coloring of
vertices, as introduced in Tomita and Yamada (1978), Fujii and Tomita (1982), and
Tomita et al. (1988). We assign in advance for each p ∈ R a positive integer value
No[p] called the Number or Color of p with the following property:

(1) If (p, r) ∈ E then No[p] �= No[r], and
(2) No[p] = 1, or if No[p] = k > 1, then there exist vertices p1 ∈ �(p), p2 ∈

�(p), . . . , pk−1 ∈ �(p) in R with No[p1] = 1, No[p2] = 2, . . . , No[pk−1] = k − 1.

Consequently, we know that

ω(R) ≤ Max{No[p]|p ∈ R}
and hence, if |Q| + Max{No[p]|p ∈ R} ≤ |Qmax| holds then, we can disregard such R.

procedure NUMBER-SORT(R, No)

begin
{NUMBER}

maxno := 0;
C1 := ∅;
while R �= ∅ do

p := the first vertex in R;
k := 1;
while Ck ∩ �(p) �= ∅

do k := k + 1 od
if k > maxno then

maxno := k;
Cmaxno := ∅

fi
No[p] := k;
Ck := Ck ∪ {p};
R := R − {p}

od
{SORT}

i := 1;
for k := 1 to maxno do

for j := 1 to |Ck| do
R[i] := Ck[j];
i := i + 1

od
od

end {of NUMBER-SORT}

Fig. 2 Number-sort
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The value No[p] for every p ∈ R can be easily assigned step by step by a so-called
greedy coloring algorithm as follows: Assume the vertices in R = {p1, p2, . . . , pm}
are arranged in this order. First, let No[p1] = 1. Next, let No[p2] = 2 if p2 ∈
�(p1), else No[p1] = 1, . . ., and so on. After Numbers are assigned to all vertices
in R, we sort these vertices in ascending order with respect to their Numbers. We
call this numbering and sorting procedure NUMBER-SORT (see Fig. 2 for details
of Procedure NUMBER-SORT). This procedure runs in O(|R|2) time. Note that the
quality of such sequential coloring depends heavily on how the vertices are ordered.
Therefore, the SORT portion of NUMBER-SORT is important. Hence, we consider
a simple and effective sorting procedure as follows.

Let Max{No[r]|r ∈ R} = maxno,

Ci = {r ∈ R|No[r] = i}, i = 1, 2, . . . , maxno

and

R = C1 ∪ C2 ∪ · · · ∪ Cmaxno

where the vertices in R are ordered in a manner such that first appear the vertices in
C1, in the same order as that in C1, and then, the vertices in C2 follow in a similar
manner, and so on.

Let

C′
i(p) = Ci ∩ �(p), i = 1, 2, . . . , maxno,

for some p ∈ R, and we have

Rp = R ∩ �(p) = C′
1(p) ∪ C′

2(p) ∪ · · · ∪ C′
maxno(p),

where the vertices in Rp are ordered in the manner described above. Both Ci and C′
i(p)

are independent sets, and C′
i(p) ⊆ Ci for i = 1, 2, . . . , maxno. Thus, it is evident that

the maximum Number (Color) required for newly coloring C′
i(p) is less than or equal

to that required for Ci. This indicates that the above coloring is steadily improved step
by step owing to the procedure NUMBER-SORT. In addition, it is noteworthy that
the latter part {SORT} in Fig. 2 runs in only O(|R|) time.

A more elaborate coloring may be more effective in reducing the total search space;
however our preliminary computational experiments indicate that elaborate coloring
schemes require a considerable amount of computation time, and thus they have an
overall negative effect on the performance.

In procedure EXPAND(R, No), after applying NUMBER-SORT more than once,
a maximum clique contains a vertex p in R such that No[p] ≥ ω(R). It is generally
expected that a vertex p in R such that No[p] = Max{No[q]|q ∈ R} has a high proba-
bility of belonging to a maximum clique. Accordingly, we select a vertex p in R such
that No[p] = Max{No[q]|q ∈ R}, as described at the beginning of the while loop in
EXPAND(R, No). Here, a vertex p such that No[p] = Max{No[q]|q ∈ R} is the last
element in the ordered set R of vertices after the application of NUMBER-SORT.
Therefore, we simply select the rightmost vertex p in R in O(1) time while R �= ∅.
Consequently, the vertices in R are selected from the last (right) to the first (left).

3.3 Initial sorting and initial numbering

Fujii and Tomita (1982) demonstrated that both the search space and the overall run-
ning time are reduced when the vertices are sorted in an ascending order with respect
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to their degrees prior to the application of the branch-and-bound algorithm for finding
a maximum clique. Carrghan and Pardalos (1990) also employed a similar technique
successfully. Therefore, at the beginning of our algorithm, we sort the vertices in V
in a descending order with respect to their degrees. This indicates that a vertex p at
the beginning of the while loop in EXPAND(V, No) is selected in an ascending order
with respect to its degrees in V, since the selection is from right to left.

Let G = (V, E) be a graph with |V| = n and V = {V[1], V[2], . . . , V[n]}, when
vertices V[n], V[n − 1], . . . , V[i + 1] have been selected and removed from V succes-
sively, we are to consider a subgraph of G induced by {V[1], V[2], . . . , V[i]}. Then,
the size of a maximum clique of such an induced subgraph is less than or equal to
Min{i, �(G) + 1}. Therefore, we initially assign Numbers to the vertices in V so that
No[V[i]] = i for i ≤ �(G), and No[V[i]] = �(G) + 1 for �(G) + 1 ≤ i ≤ |V|. This
initial Number has the desired property that in EXPAND(V, No), No[p] ≥ ω(V) for
any p in V while V �= ∅, as stated above. Thus, this simple initial Number is sufficient.
Figure 3 along with Figs. 1 and 2, completes the MCQ algorithm in Tomita and Seki
(2003), where all comments beginning with /∗ and ending with ∗/ should be deleted
from Fig. 1.

Note that the rather time-consuming calculation of the degree of vertices is carried
out only at the beginning of MCQ and not in NUMBER-SORT. Therefore, the total
time required to reduce the search space can be very small. It should be also noted
that the initial order of the vertices in our algorithm is effective for the reduction in
the search space, as described at the beginning of this section. Moreover, this effec-
tiveness is also observed in the subsequent subproblems. This is because the initial
order of the vertices in the same Number is inherited in the subsequent subproblems
due to the method employed in NUMBER-SORT.

In order to confirm the effectiveness of our initial sorting, we have implemented an
algorithm revMCQ, which for comparison is obtained from MCQ by replacing “Sort
vertices of V in the descending order” in MCQ with “Sort vertices of V in the ascending
(i.e., reverse) order.” The results of some computations carried out by MCQ and rev-
MCQ for random graphs with the number of vertices n and the edge probability p
in Table 1 confirm that our initial sorting is effective. Here, Branches indicates the total

procedure MCQ (G = (V, E))
begin

global Q := ∅;
global Qmax := ∅;

{SORT}
Sort vertices of V in a descending order with respect to their degrees;

{NUMBER}
for i := 1 to �(G)

do No[V[i]] := i od
for i := �(G) + 1 to |V|

do No[V[i]] := �(G) + 1 od
EXPAND(V, No);
output Qmax

end {of MCQ }

Fig. 3 Algorithm MCQ
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Table 1 MCQ versus revMCQ

Graph CPU time [sec] Branches

n p ω MCQ revMCQ MCQ revMCQ

100 0.9 29–32 0.07 3.60 10,854 582,642
300 0.7 19–21 37.12 89.91 6,214,907 13,495,981
600 0.5 14 17.81 24.35 3,427,350 4,222,273

2000 0.3 10–11 63.14 71.69 9,261,982 9,736,627

number of EXPAND() calls excluding that at the beginning. Hence, it corresponds to
the extent of the search space. Each entry under CPU time and Branches is an average
value for 10 graphs with each pair of n and p. Entries in column ω are the range of
the size of the maximum cliques obtained. The computer used for the experiment is
identical to that used in Sect. 4.

3.4 Algorithm MCR with improved initial sorting

We further improve the initial sorting of the vertices. First, we alter the order of the
vertices in V = {V[1], V[2], . . . , V[n]} such that in a subgraph of G = (V, E) induced
by a set of vertices V′ = {V[1], V[2], . . . , V[i]}, it holds that V[i] always has the mini-
mum degree in {V[1], V[2], . . . , V[i]} for 1 ≤ i ≤ |V|. While this order, as a result, is
similar to that of Carraghan and Pardalos (1990), it should be noted again that time-
consuming calculation of the degree of vertices is carried out only at the beginning of
MCR as in MCQ, and hence the overhead of the overall selection of vertices is very
small, too.

In general, we have several vertices in V′ with the same degree. In such a case,
for a vertex q, we further consider adjacent vertices and define a value ex-degV′(q) =∑

r∈�V ′ (q) degV′(r). Then, we arrange vertices V[i − 1] and V[i] with the same degree
so that ex-degV′(V[i − 1]) ≥ ex-degV′(V[i]).

Finally, when all the vertices V[1], V[2], . . . , V[i] have the same (minimum) degree,
that is, a subgraph induced by {V[1], V[2], . . . , V[i]} is regular, sorting these vertices
becomes pointless. In this case, we apply NUMBER-SORT to this set of vertices, and
we make use of the resulting Number(No). If the maximum of the resulting numbers
for V[1], V[2], . . . , V[i] is maxno, then we assign the vertices V[i+1], V[i+2], . . . , V[n],
the initial Numbers Min {maxno + 1, �(G) + 1}, Min {maxno + 2, �(G) + 1}, . . ., Min
{maxno + (|V| − i), �(G) + 1}, respectively.

Note that if the vertices V[1], V[2], . . . , V[i] have the same degree (i−1), then V[1],
V[2], . . . , V[i] constitutes a clique of size i.

By taking the above all into account, we have an improved clique finding algorithm
MCR, as shown in Fig. 3.5.

See Sect. 3.5. Example in Tomita and Kameda (2005) for an example run of MCR.
(See also Example in Sect. 3 of Tomita et al. (to appear) for understanding a Basic
Algorithm in Sect. 3.1.)

3.5 Comparison between MCQ and MCR

Prior to the computational experiments for MCR, we present some characteristic
results of computational experiments for the comparison between MCQ and MCR
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procedure MCR(G = (V, E))
begin

global Q := ∅; global Qmax := ∅;
{SORT}

i := |V|;
R := V; V := ∅;
Rmin := set of vertices with the minimum degree in R;
while |Rmin| �= |R| do

if |Rmin| ≥ 2 then
p := a vertex in Rmin such that ex-deg(p) = Min{ex-deg(q) | q ∈ Rmin}

else p := Rmin[1];
fi
V[i] := p; R := R − {p};
i := i − 1;
for j := 1 to |R| do

if R[j] is adjacent to p then
deg(R[j]) := deg(R[j]) − 1

fi
od
Rmin := set of vertices with the minimum degree in R

od
{Regular subgraph}

NUMBER-SORT(Rmin, No);
for i := 1 to |Rmin| do

V[i] := Rmin[i]
od

{NUMBER}
m := Max{No[q] | q ∈ Rmin} ;
mmax := |Rmin| + �(G) − m;
m := m + 1;
i := |Rmin| + 1;
while i ≤ mmax do

if i > |V| then goto Start fi
No[V[i]] := m;
m := m + 1;
i := i + 1

od
for i := mmax + 1 to |V| do

No[V[i]] := �(G) + 1
od

Start:
if degRmin(q) = |Rmin| − 1 for all q ∈ Rmin

then Qmax := Rmin
fi
EXPAND(V, No);
output Qmax

end {of MCR}

Fig. 4 Algorithm MCR
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Table 2 MCQ versus MCR for DIMACS benchmark graphs

Graph CPU time [sec]

Name n density ω MCQ MCR

hamming8-2 256 0.969 128 0.021 0.0036
hamming10-2 1,024 0.990 512 1.82 0.33
johnson16-2-4 120 0.765 8 0.34 0.21
p_hat300-3 300 0.744 36 26.5 15.8
p_hat500-3 500 0.752 50 4,470 2,663
san200_0.9_3 200 0.900 44 16.41 0.24
san400_0.7_3 400 0.700 22 9.5 4.5
san400_0.9_1 400 0.900 100 72.7 5.3

in Table 2. The computer used for the experiments is identical to that used in Sect. 4.
Table 2 presents the results for DIMACS benchmark graphs given in Johnson and
Trick (1996). In this table, density represents the edge density of the graph, i.e. (the
number of edges of the graph)/{n(n − 1)/2}. The MCR is confirmed to be faster than
MCQ in almost all the cases, while MCQ could be faster than MCR when the given
graph is very sparse or very dense. Henceforth, we exclusively focus on MCR in the
following sections.

4 Computational experiments

We have implemented the algorithm MCR in the programming language C and carried
out computational experiments to evaluate it. The computer used has a Pentium4
2.20 GHz CPU and a Linux operating system. We compare the CPU time required by
MCR with those by the other existing algorithms for the same problems. The compar-
ison is made based on the well-established way in the Second DIMACS Implemen-
tation Challenge for Cliques, Coloring, and Satisfiability shown in Johnson and Trick
(1996).

First, we obtained our user time T1 [sec] required to solve each of the given five
benchmark instances r100.5, r200.5, r300.5, r400.5, and r500.5 on our com-
puter by the benchmark program dfmax given by Applegate and Johnson (see Johnson
and Trick 1996) as shown under T1 of Table 5 in Appendix.

For the other algorithm New in Östergård (2002) for comparison, we took his
user time T2 [sec] out of Sect. 3. Experimental results (p. 203) of Östergård (2002)
required to solve each of the same five benchmark instances on his computer by the
same benchmark program dfmax as shown under T2 of Table 5 in Appendix. From
these values, we calculated the average of the ratio T2/T1 to be 2.85. That is, we con-
sider that our computer is 2.85 times faster than Östergård (2002)’s computer. See the
Appendix for the details along with the other algorithms for comparison.

4.1 Results for random graphs

Prior to the present work, it was confirmed in Tomita et al. (1988) that an earlier
version of MCQ was faster than Balas and Yu (1986)’s algorithm by computational
experiments for random graphs.
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For each pair of n (the number of vertices) up to 15,000 and p (edge probability)
in Table 3, random graphs are generated so that there exists an edge for each pair of
vertices with probability p. Then the average CPU times [seconds] required to solve
these graphs by dfmax and MCR are listed in Table 3. The averages are taken for ten
random graphs for each pair of n and p. The exceptions are the star (*)-marked CPU
time and the CPU times for n ≥ 5, 000, where each CPU time is for a single graph
with the given n and p values. In addition, the CPU times by New in Östergård (2002)
and COCR (COC, for short) in Sewell (1998) are added in Table 3; each CPU times is
adjusted according to the ratio given in the Appendix. The bold-faced entry indicates
the fastest time in a given row.

In this table, it is evident that MCR is the fastest for random graphs except for the
cases where [n = 150, p = 0.9], [n = 200, p = 0.8] and [n = 200, p = 0.9]. In these
cases, COCR is the fastest. It is specially designed for solving the maximum clique
problem in dense graphs.

For reference, the associated branches by dfmax and MCR are listed in Table 5
of Tomita and Kameda (2005). As one of the characteristic examples, for random
graphs with n = 150 and p = 0.98, the number of branches by MCR is 28,401 (an
average for ten graphs), while those by dfmax is more than 4.29 × 109 = 232 (for a
single graph). As the result, the CPU time by MCR is 0.36 seconds and that by dfmax
is more than 105 seconds, as shown in Table 3. The algorithms dfmax and MCR are
similar in principle, therefore, the difference demonstrates the effectiveness of the
tighter bounding condition and the appropriate sorting of vertices adopted in MCR.

These results show that MCR is successful in general for obtaining a good trade-
off between the increase in computation time and the reduction in the search space
associated with approximate coloring and the appropriate sorting of vertices.

Thus far, it is widely recognized that dfmax is the fastest maximum clique algorithm
for sparse graphs, as stated in Östergård (2002) and Fahle (2002). Table 3, however,
shows that MCR is faster than dfmax for all the graphs tested, including very sparse
graphs. It is to be noted that MCR is considerably faster than dfmax when the number
of vertices is very large, even for sparse graphs.

4.2 Results for DIMACS benchmark graphs

Table 4 lists the CPU times required by dfmax and MCR to solve the DIMACS bench-
mark graphs given in Johnson and Trick (1996). In addition, the CPU times by New in
Östergård (2002), χ+DF in Fahle (2002), MIPO (MIP, for short) in Balas et al. (1996),
and SQUEEZE (SQU, for short) in Bourjolly et al. (1996) are added to Table 4; each
of these CPU times is adjusted according to the ratio given in the Appendix. Target/3
(Ta/3, for short) is also added in the last column for reference; each time in this col-
umn is that of Target in Stix (2003) divided by three due to the reason described in the
Appendix. The bold-faced entry indicates the fastest time among those obtained
within the time limits in a given row. The results in Table 4 show that MCR is
faster than dfmax except for only very “easy” graphs, which are solved in less than
0.007 seconds.

MCR is also faster than New for most graphs except for a few. For a more detailed
comparison between MCR and New, we note that MCR is more than ten times faster
than New for ten graphs, while New is more than 10 times faster than MCR for only
two graphs in Table 4. In addition, MCR is more than or equal to 100 times faster than
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Table 3 CPU time [sec] for random graphs

Graph dfmax MCR New COCR(COC)

n p ω

0.5 9–10 0.0019 0.0010 0.13
0.6 11–13 0.0061 0.0022 0.0035 0.13
0.7 14–16 0.0286 0.0063 0.011 0.18

100 0.8 19–21 0.22 0.019 0.10 0.24
0.9 29–32 5.97 0.059 1.04 0.31
0.95 39–46 40.94 0.019 0.31
0.98 56–61 37.55 0.0015

0.7 16–18 0.57 0.099 0.53
150 0.8 23 11.23 0.77 1.18

0.9 36–39 1,743.70 7.61 1.83
0.95 50–57 61,118.8∗ 4.27
0.98 75–84 > 105∗ 0.36

0.4 9–10 0.012 0.006 0.011
0.5 11–12 0.058 0.022 0.03 0.40
0.6 14 0.46 0.12 0.27 0.82

200 0.7 18–19 6.18 0.93 4.75 2.59
0.8 24–27 314.92 17.63 231.54 13.66
0.9 40–44 > 105∗ 980.36 57.84

0.4 9–10 0.078 0.036 0.074
0.5 12–13 0.59 0.196 0.32 1.78

300 0.6 15–16 7.83 1.85 5.50 7.83
0.7 19–21 233.69 30.89 179.71
0.8 28–29 48,280.6∗ 1,790.01

0.2 7 0.018 0.014 0.03
0.3 8–9 0.13 0.064 0.13
0.4 11 1.02 0.44 0.94

500 0.5 13–14 14.45 4.52 11.40 27.41
0.6 17 399.22 79.94 288.10
0.7 22–23 37,796.9∗ 3,810.1∗

0.2 7–8 0.24 0.18 0.33
0.3 9–10 3.09 1.57 2.58

1,000 0.4 12 51.92 19.49 36.46
0.5 15 1,766.85 482.52
0.6 20 160,028.3∗ 27,095.7∗

0.1 6–7 1.82 1.37
0.2 9 35.07 26.05

3,000 0.3 11–12 1,116.54 598.58
0.4 14 71,256.7∗ 27,244.1∗

0.1 7 13.51 11.87
5,000 0.2 9 531.65 420.74

0.3 12 28,315.34 18,524.67

10,000 0.1 7 256.43 185.88
0.2 10 23,315.34 16,874.75

15,000 0.1 8 1,354.64 875.96
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Table 4 CPU time [sec] for DIMACS benchmark graphs

Graphs dfmax MCR New χ+DF COC MIP SQU Ta/3

Name ω

(n, density)

brock200_1 21 24 • 2.4 19 112 1,471 116
(200, 0.745)
brock200_2 12 0.05 0.015 0.018 0.37 0.54 847 60 0.3
(200, 0.496)
brock200_3 15 0.35 ◦ 0.071 0.15 2.7 195 1.7
(200, 0.605)
brock200_4 17 1.5 0.29 0.34 9.9 1.4 419 6.0
(200, 0.658)
brock400_1 27 41,615 • 2,410 >17,000
(400, 0.75)
brock400_2 29 25,595 986 >17,000 >652
(400, 0.75)
brock400_3 31 27,895 � 1,625 >17,000
(400, 0.75)
brock400_4 33 20,063 868 >17,000 >652
(400, 0.75)
brock800_1 23 > 105 22,711 >17,000
(800, 0.65)
brcok800_2 24 > 105 20,519 >17,000 >652
(800, 0.65)
brock800_3 25 > 105 13,877 >17,000
(800, 0.65)
brock800_4 26 > 105 9,669 >17,000 >652
(800, 0.65)

c-fat200-1 12 ◦ 0.0002 0.00075 0.0035 0.008 22 3.2
(200, 0.077)
c-fat200-2 24 ◦ 0.0003 0.0014 0.0035 0.008 11 2.8
(200, 0.163)
c-fat200-5 58 444 ◦ 0.0025 2.7 0.008 61 1.7
(200, 0.426)
c-fat500-1 14 ◦ 0.0010 0.0042 0.025 0.016 51
(500, 0.036)
c-fat500-2 26 • 0.0011 0.0063 0.028 0.016 91
(500, 0.073)
c-fat500-5 64 2.7 0.017 3,664 0.024 50
(500, 0.186)
c-fat500-10 126 > 105 0.034 0.025 0.024 36
(500, 0.374)

hamming6-2 32 0.0175 � 0.00011 0.0035 0.008 0.004
(64, 0.905)
hamming6-4 4 0.00015 0.00010 0.0035 0.48 0.09
(64, 0.349)
hamming8-2 128 > 105 ◦ 0.0036 0.014 0.088 0.05
(256, 0.969)
hamming8-4 16 3.1 0.28 0.30 7.37 1.6 45 1,290
(256, 0.639)
hamming10-2 512 > 105 ◦ 0.33 0.88 6.2 0.96
(1,024, 0.990)

johnson8-2-4 4 0.00005 ◦ 0.00002 0.0035 0.0003
(28, 0.556)
johnson8-4-4 14 0.0071 • 0.00055 0.0035 0.032 0.0045 0.35
(70, 0.768)
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Table 4 continued

Graphs dfmax MCR New χ+DF COC MIP SQU Ta/3

Name ω

(n, density)

johnson16-2-4 8 1.2 0.21 0.095 9.6 � 0.003 777
(120, 0.765)

keller4 11 0.62 ◦ 0.037 0.18 3.1 0.67 184 237
(171, 0.649)
MANN_a9 16 0.062 � 0.00018 0.0035 0.008
(45, 0.927)
MANN_a27 126 > 105 4.2 >3,500 12,489 4.3 738
(378, 0.990)
MANN_a45 345 > 105 6,213 >3,500 >17,000
(1035, 0.996)

p_hat300-1 8 0.08 ◦0.0060 0.014 0.088 0.69 1,429 82
(300, 0.244)
p_hat300-2 25 1.0 • 0.043 0.35 3.6 0.96 175
(300, 0.489)
p_hat300-3 36 1,259 15.8 1,034 8.5 3,972
(300, 0.744)
p_hat500-1 9 0.09 ◦ 0.038 0.10 0.72 837 0.7
(500, 0.253)
p_hat500-2 36 219 � 4.5 151 246 2,582 >7,200
(500, 0.505)
p_hat500-3 50 > 105 ◦ 2,663 >17,000 >7,200
(500, 0.752)
p_hat700-1 11 0.32 0.14 0.24 3.2 4.3 >7,513 2.3
(700, 0.249)
p_hat700-2 44 8,651 64 2,518 40 >7,200
(700, 0.498)
p_hat1000-1 10 1.7 ◦ 0.75 2.1 20
(1000, 0.245)
p_hat1000-2 46 > 105 ◦ 3,512 >17,000
(1000, 0.490)
p_hat1500-1 12 16 ◦ 6.3 145
(1500, 0.253)

san200_0.7_1 30 4,181 • 0.027 0.20 1.9 0.33 311 0.3
(200, 0.700)
san200_0.7_2 18 26,879 0.0095 0.014 0.80 8.5 >7,513 2.0
(200, 0.700)
san200_0.9_1 70 > 105 1.8 0.095 76 0.08 0.43 7.7
(200, 0.900)
san200_0.9_2 60 > 105 6.2 1.5 2,330 • 0.24 13 109
(200, 0.900)
san200_0.9_3 44 71,005 �� 0.24 235 24 431 >7,200
(200, 0.900)
san400_0.5_1 13 719 0.029 ◦ 0.011 8.1 133 1.3
(400, 0.500)
san400_0.7_1 40 > 105 � 2.3 >3,500 514 40.7
(400, 0.700)
san400_0.7_2 30 > 105 �� 0.45 178 193 787 189
(400, 0.700)
san400_0.7_3 22 > 105 �� 4.5 745 >7,200
(400, 0.700)
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Table 4 continued

Graphs dfmax MCR New χ+DF COC MIP SQU Ta/3

Name ω

(n, density)

san400_0.9_1 100 > 105 �� 5.3 8,712 3,240 >7,200
(400, 0.900)
san1000 15 > 105 7.1 � 0.18 3,673
(1000, 0.502)
sanr200_0.7 18 5.0 • 0.79 4.9 30 318
(200, 0.702)
sanr200_0.9 42 > 105 � 434 >17,000
(200, 0.898)
sanr400_0.5 13 3.5 ◦ 1.1 2.3 28
(400, 0.501)
sanr400_0.7 21 3,939 • 503 19,218
(400, 0.700)

DSJC500.5 13 18 ◦ 5.2 29 >7,513
(500, 0.502)
DSJC1000.5 15 1,987 486 >652
(1000, 0.500)

Entries indicated by ��, �, •, and ◦ represent those that are more than or equal to 100, 10, 5, and 2
times faster than all the others in the same row, respectively.

New for six graphs, while New is more than 100 times faster than or equal to MCR
for no graph in Table 4.

Further, MCR is faster than χ+DF for all graphs except c-fat500-10 in Table 4.
MCR is faster than COCR for all graphs except p_hat300-3 and p_hat700-2 in

Table 4.
MCR is faster than MIPO for all graphs except johnson16-2-4, san200_0.9_1, and

san200_0.9_2 in Table 4.
MCR is faster than SQUEEZE for all graphs except san200_0.9_1 in Table 4.
MCR is faster than Target/3 for all instances in Table 4.
As a whole in Table 4, MCR is more than 10 times faster than all the other algo-

rithms for ten graphs. In particular, MCR is more than or equal to 100 times faster
than all the other algorithms for four graphs. On the other hand, New is more than ten
times faster than all the other algorithms for only one graph, and MIPO is more than
ten times faster than all the other algorithms for only 1 graph, and other algorithms
are more than ten times faster than all the other algorithms for no graph.

From the results described in Sects. 4.1 and 4.2, we can summarize that in general,
MCR decidedly outperforms the other existing algorithms cited here.

5 Concluding remarks

We have shown that our pruning technique by NUMBER-SORT based on greedy
coloring is very effective, and hence, in general MCR decidedly outperforms other
existing algorithms. By using more elaborate coloring, we can increase the perfor-
mance for dense graphs but with possible deterioration for sparse graphs as in Sewell
(1998). The high performance of MCR results from its simplicity. Particularly the sim-
plicity of NUMBER-SORT along with the appropriately improved initial sorting and
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the simple Numbering of vertices considerably enhances the performance of MCR. It
is noticed that a simpler algorithm of Corno et al. (1995) could be faster than MCR
for very large sparse graphs. (See, Tomita et al. 2006).

Our algorithms have already been successfully applied to solve some interest-
ing problems in bioinformatics by Bahadur et al. (2002, 2005, 2006) and Akutsu
et al. (2006), image processing by Hotta et al. (2003), design of quantum circuits by
Nakui et al. (2003), design of DNA and RNA sequences for biomolecular computa-
tion by Kobayashi et al. (2003). Our techniques can also be applied for generating
maximal cliques, as shown in Tomita et al. (to appear).
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Appendix

Clique Benchmark Results
Type of Machine: Pentium4, 2.20 GHz
Compiler and flags used: gcc -O2
Machine Benchmarks: Tables 5 and 6
For Östergård (2002)’s user time for in instances (T2) and Sewell (1998)’s user time for
instances (T3), by excluding the values of T2/T1 and T3/T1 for r100.5 and r200.5,

Table 5 Each user time for instances [sec]

Graph MCR New COCR(COC)

Our Östergård’s Sewell’s

T1 T2 T2/T1 T3 T3/T1

r100.5 2.13 × 10−3 0.01 4.69 0.14 65.73
r200.5 6.35 × 10−2 0.23 3.62 3.64 57.32
r300.5 0.562 1.52 2.70 31.10 55.34
r400.5 3.48 10.05 2.89 191.98 55.06
r500.5 13.3 39.41 2.96 734.99 55.11

MCR MIPO(MIP) SQUEEZE(SQU)
Our Balas et al.’s Bourjolly et al.’s
T1 T4 T4/T1 T5 T5/T1

r100.5 2.13 × 10−3 0.09 42.25 0.02 9.39
r200.5 6.35 × 10−2 2.16 34.03 0.75 11.81
r300.5 0.562 18.5 32.92 6.36 11.32
r400.5 3.48 114 32.76 39.60 11.38
r500.5 13.3 432 32.48 153.57 11.55
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Table 6 Fahle’s user time for DIMACS benchmark graphs [sec]

Our Fahle’sGraph
T1 T7 T7/T1

brock200_1 23.96 28.82 1.203
brock200_4 1.47 1.73 1.177
hamming8-4 3.07 4.05 1.319
hamming16-2-4 1.21 1.51 1.248
p_hat300-2 1.04 1.25 1.202
p_hat1000-1 1.66 2.18 1.313
p_hat1500-1 15.57 20.77 1.334
san400_0.5_1 719.16 924.5 1.286
sanr200_0.7 5.02 5.96 1.187
sanr400_0.5 3.50 4.07 1.163

since these instances are extremely small, the average values of T2/T1 and T3/T1 are
obtained as 2.85 and 55.2, respectively. For Balas et al. (1996)’s user time for instances
(T4) and Bourjolly et al. (1996)’s user time for instances (T5), the average values of
T4/T1 and T5/T1 are obtained as 33.0 and 11.5, respectively, by similarly excluding the
values T4/T1 and T5/T1 for r100.5 (see Table 5).

χ+DF

Fahle (2002)’s dfmax time (T7) for some DIMACS benchmark graphs vs. our dfmax
time (T1) are shown in Table 6 in Appendix, while Fahle (2002)’s dfmax time for any
of the above five benchmark instances r100.5,. . ., r500.5 is not described in Fahle
(2002). By considering these values, we obtain the average value of T7/T1 as 1.24.

Target

No result is described in Stix (2003) on the CPU time by the benchmark program df-
max. Stix (2003) uses a Pentium III 450MHz PC, while Fahle (2002) uses a PentiumIII
933 PC. If we consider that Stix’s PC is 450/933 times as fast as Fahle’s PC, then Stix’s
PC is 1/(1.24 × (933/450)) = 1/2.57 times as fast as ours. Therefore, for Stix’s user time
for instances (T8), we consider that T8/T1 is approximately at most 3.
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